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Permanently stable ground ice is found beneath a permanently frost free surface on Mars, and similar
conditions exist in the Antarctic Dry Valleys. This phenomenon is due to a balance of the vapor pressure of the
ice with the atmospheric humidity in the presence of large amplitude temperature oscillations. An exactly
solvable model example shows that the fraction of time the atmosphere needs to be saturated to stabilize the ice
decreases with temperature amplitude. It is estimated that for conditions that prevail on Mars today, the mean
temperature needs to be about 5 K lower than the frost point temperature for ground ice to be stable. A
decomposition method to evaluate the contribution of short term weather events to ground ice stability is
developed; when applied to a study site in the Dry Valleys, it reveals that the coldest periods contribute most
to stabilization.
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I. INTRODUCTION

A. Motivation

Two recent discoveries in earth and planetary science re-
late to the stability of ground ice with respect to sublimation.
One fifth of the surface of Mars is underlain by ground ice,
which is thought to be permanently stable due to a balance
between the atmospheric humidity and the ice, although the
overlying planetary surface is perennially frost free �1,2�.
Similarly, in the Dry Valleys of Antarctica, ground ice is
found with an exceptionally old �“fossil”� age, although there
is no perennial ice on the surface and little seasonal precipi-
tation �3,4�. The present paper tries to illuminate the reasons
for this phenomenon, long-lived ice beneath dry surfaces.
Despite the problem’s relevance for understanding ice ages
on Mars and its usefulness for inferences about the history of
the East Antarctic ice sheet, there is to this date no math-
ematical study of this phenomenon. Numerical investigations
have been carried out both for Mars, e.g., �5–8�, and the Dry
Valleys �9–11�.

B. Basic equations and averaging procedure

Throughout this paper we consider a one-dimensional
model, where a layer of ice is covered by a layer of soil that
contains no perennial ice. Temperature oscillations decay
with depth, and if the ice is very deeply buried its tempera-
ture is constant. �The annual thermal skin depth of dry soils
is typically on the order of 1 m.� Vapor can migrate from the
ice to the atmosphere and in the other direction, see Fig. 1
for illustration. The surface experiences the largest tempera-
ture variations, and the air may transition between saturated
and unsaturated. Atmospheres can keep surplus water aloft
for short time periods �e.g., overnight�, but necessarily pre-
cipitate snow or frost onto the surface when saturated for a
prolonged period of time.

H2O transport in and out of the soil is in the form of vapor
diffusion. The diffusive mass flux is �12�

J = − D�0
�

�z
��v

�0
� , �1�

where �0 is the total air density, �v is the mass density of
water vapor, and D is the diffusion coefficient of the porous
soil. In addition there is advective transport which is known
to be of order O��v /�0� �13�. A reasonable approximation is
J=−D��v /�z. For constant diffusivity, the time average is

�J� = − D
���v�

�z
. �2�

The physical phases involved are water vapor, ice, and
adsorbed H2O. Adsorption on soil surfaces occurs because
the binding energy and entropy on a grain surface differs
from that on a pure ice surface. At 200 K the vapor density is
109 times smaller than that of solid ice; although adsorbed
H2O is less dense than the solid form, it is still a huge source
or sink compared to the vapor density. Dynamically, adsorp-
tion leads to a diffusion skin effect analyzed in Refs. �14,15�.

It is possible to extract relevant quantities using an aver-
aging procedure, without solving the diffusion equation and
without detailed knowledge of adsorption capacity �8,9�. The
mass conservation law is
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FIG. 1. Schematic model system where ground ice exchanges
water vapor with the atmosphere through a layer or porous soil.
Temperature oscillations decay with depth, as illustrated by a set of
instantaneous temperature profiles.
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�

�t
��v + �ice + �adsorbed� = −

�J

�z
. �3�

�v is periodic in time, so its long term change is zero. Like-
wise, �adsorbed is determined by temperature and partial pres-
sure. Both quantities return to about the same values after a
year. �Even if adsorbate mass does not reach equilibrium but
is kinetically limited �16�, periodic cycles yield little net ef-
fect.� And, at depths where ice is not permanent, ���ice� /�t
=0, for the same reason. We are left with ��J� /�z=0. The
averages are over at least one solar year, or an integer mul-
tiple of periodic temperature cycles. The mean vapor flux �J�
is constant with depth and determined by the boundary val-
ues

�J�
�z

D
= ��v�surface�� − ��v�ice table�� , �4�

where �z is the thickness of the dry layer. Hence the loss or
gain can be determined from averaging vapor densities at the
boundaries �the surface and the ice table�, irrespective of
adsorbed water and transient subsurface frost condensation.
Ground ice is stable �survives indefinitely� when �J��0, un-
stable when �J��0, and in equilibrium when �J�=0.

At any depth, there is either net depletion or net accumu-
lation, such that the soil layer will remain free of permanent
ice or pore spaces will fill with ice. For the environments
considered here, significant changes in ice volume require at
least many thousands of years. This slow evolution justifies
to neglect the latent heat of sublimation compared to the heat
available. For the same reason, the movement of the ice table
or the change in pore ice fraction over one temperature cycle
is tiny.

II. STABILITY CRITERION FOR EXACTLY SOLVABLE
MODEL

A. Model setup

We consider a sinusoidal temperature oscillation with a
mean Tm, amplitude Ta, and angular frequency �,

T�t� = Tm + Ta cos��t� . �5�

The saturation vapor pressure is given by

psv�T� = pm exp	−
H

R
� 1

T
−

1

Tm
�
 , �6�

where pm= psv�Tm�, H=51.058 MJ/kg is the sublimation en-
thalpy, and R is the universal gas constant. The partial pres-
sure p in the atmosphere is assumed constant, unless satu-
rated p=min(pf , psv�T�). We can define a frost point
temperature Tf, below which saturation occurs, pf = psv�Tf�.
Since the temperature is highest at t=0, the atmosphere is
unsaturated between a time −t1 and t1 and saturated during
the remainder of the cycle.

It is convenient to introduce a parameter

� = cos��t1� , �7�

such that

� =
Tf − Tm

Ta
. �8�

The vapor density on the surface during unsaturated peri-
ods is

�u =
�

R

pf

T
, �9a�

and when saturated

�s =
�

R

psv�T�
T

, �9b�

where � is the molar weight of H2O, �=18. We consider the
limit when ice is very deeply buried, because otherwise the
thermal conductivity of the ice would change the tempera-
ture profile and complicate the problem. The ground ice then
is at the mean temperature. Without geothermal heating, ice
is unstable unless it is stable at depth �although this has been
disputed by numerical calculations in Ref. �17��. The vapor
density at the ice is

�g =
�

R

pm

Tm
. �9c�

The net flux over one cycle is

�J�
�z

D
= 2�

0

t1

�udt + 2�
t1

�/�

�sdt − �
0

2�/�

�gdt . �10�

The ice is stable when �J��0 �inward flux� and unstable
when �J��0 �outward flux�.

B. First order (analytically)

Expansion of Eqs. �6�, �9a�, and �9b� to first order in Ta
around Tm and pm yields

�u =
�

R

pm

Tm
3 �Tm

2 +
H

R
Ta cos��t1� − TaTm cos��t�� ,

�11a�

�s =
�

R

pm

Tm
3 	Tm

2 + Ta�H

R
− Tm�cos��t�
 . �11b�

The net flux over one cycle �10� is

�J� =
D

�z

�

R

2pmTa

Tm
3 �

H

R
��t1 cos��t1� − sin��t1�� . �12�

The flux vanishes when �t1=tan��t1�. The only solution
with ��t1 � 	� is t1=0. Consequently, the condition for equi-
librium is �=1 or

Tf = Tm + Ta. �13�

The lowest order balance is not Tf =Tm, as some authors
assume. The condition for stability is Tf �Tm+Ta. �But, as
will become clear below, this practically overestimates the
requirement.� To first order in temperature amplitude, the
atmosphere needs to be saturated all the time for ice to be
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stable. A continuously saturated atmosphere would have to
precipitate, meaning that the first order balance does not ex-
plain permanent ice beneath a permanently dry surface.

C. Second order (analytically)

Although Ta is small in the perturbation expansion, Tf
−Tm determines t1, which can vary from 0 to �. Hence the
strategy is to first expand in Ta, keeping t1 as a variable, and
later expand t1 around the first order solution.

Expansion of Eqs. �9a� and �9b� to second order in Ta
yields

�u =
�

R

pm

2Tm
5 	2Tm

4 + 2
H

R
TaTm

2 � + �H

R
�2

Ta
2�2 − 2

H

R
Ta

2Tm�2

− 2TaTm�Tm
2 +

H

R
Ta��cos��t� + 2Ta

2Tm
2 cos2��t�
 ,

�14a�

�s =
�

R

pm

2Tm
5 2Tm

4 + 2Ta�H

R
− Tm�Tm

2 cos��t� + Ta
2	�H

R
�2

− 4
H

R
Tm + 2Tm

2 
cos2��t�� . �14b�

After integration and some algebra,

�J� =
D

�z

�

R

pmTa

4Tm
5 �
2�Ta	�H

R
�2

− 4
H

R
Tm + 2Tm

2 

+ 2

H

R
�t1�H

R
Ta�− 1 + 2�2� + 4Tm�Ta + Tm� − Ta�2��

− 8
H

R
Tm�Tm + Ta��sin��t1�

−
H

R
Ta�H

R
− 4Tm�sin�2�t1�� . �15�

Since the flux is set to zero for equilibrium, a factor
�pmTaD / �2�RTm

5 �z� can be canceled, and t1 can be ex-
pressed in terms of � with Eq. �7�,

0 = �Ta	�H

R
�2

− 4
H

R
Tm + 2Tm

2 
 +
H

R
�H

R
Ta�− 1 + 2�2�

+ 4Tm�Ta + Tm� − Ta�2��arccos �

− 4
H

R
Tm�Tm + Ta���1 − �2 −

H

R
Ta�H

R
− 4Tm���1 − �2.

�16�

This is an implicit equation for �, but to obtain an explicit
solution, further series expansion is necessary. The first-order
calculation has shown that t1 lies close to 0, not close to � /2,
for oscillations of small amplitude. Expansion around �=1
yields

0 = �Ta	�H

R
�2

− 4
H

R
Tm + 2Tm

2 
 +
8�2

3

H

R
�−

H

R
Ta

+ 3TaTm − Tm
2 ��1 − ��3/2 + O�1 − ��5/2. �17�

Omitting the higher orders in �1−�� leads to

�1 − ��3/2 =
3�

8�2
Ta

�H/R�2 − 4�H/R�Tm + 2Tm
2

�H/R���H/R�Ta − 3TaTm + Tm
2 �

. �18�

If we further take advantage of Ta
Tm, the equilibrium con-
dition is

Tf − Tm

Ta
= 1 − 	 3�

8�2

Ta

Tm
� H

RTm
− 4 + 2

RTm

H
�
2/3

�19�

and, using �t1=arccos ���2�1−��,

�t1 = 	3�

4

Ta

Tm
� H

RTm
− 4 + 2

RTm

H
�
1/3

. �20�

Practically, however, H /R�30Tm and a better approximation
of Eq. �18� may be

Tf − Tm

Ta
= 1 − � 3�

8�2
Ta

�H/R� − 4Tm

�H/R�Ta + Tm
2 �2/3

, �21�

�t1 = 	3�

4
Ta

�H/R� − 4Tm

�H/R�Ta + Tm
2 
1/3

. �22�

The fraction of time during each cycle the atmosphere is
unsaturated is �t1 /�. Hence the duration it is unsaturated
increases with temperature amplitude, if ground ice and at-
mosphere are to be exactly in equilibrium.

D. All orders (numerically)

Numerically, the flux �10� can be evaluated without lin-
earization. Figure 2 shows the equilibrium solution, obtained
by numerically finding the root �J�=0 �solid line�. The graph
confirms that the perturbation in Ta is singular �not analytic�,
because it has infinite slope at Ta=0. The dashed and dotted
lines show the approximations derived above. An amplitude
of only a few K allows the atmosphere to be unsaturated for
a sizable fraction of time while still balancing the vapor pres-
sure of the ice. This is a consequence of the strong nonlinear
dependence of vapor pressure on temperature. Although the
absolute humidity required to stabilize ice increases with
temperature amplitude, the fraction during which the air
needs to be saturated decreases with amplitude.

Another result from numerical evaluation of the flux for a
sinusoidal temperature oscillation is shown in Fig. 3. Assum-
ing a frost point temperature of 200 K, close to conditions on
present-day Mars, the mean temperature and temperature
amplitude required for ground ice stability are drawn as a
solid line. This dependence is very nonlinear in Tf −Tm,
which allows us to estimate how much lower Tm has to be
than Tf without accurate knowledge of Ta. Day-night tem-
perature differences on Mars are often of order 80 K, and as
a rule of thumb, the mean temperature should be about 5 K
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below the frost point temperature. This is consistent with
model calculations using detailed temperature histories for
Mars, where a difference of at least 6 K has been reported
�8�.

III. IDENTIFICATION OF STABILIZING EVENTS

Realistic environments involve variable humidity, and it
would be useful to identify which weather events or seasons
are most favorable for the survival of ground ice. For ex-
ample, Föhns increase air temperature and change air mois-

ture �18�. According to Eq. �4�, ice loss increases when
��v�surface��− ��v�ice table�� is smaller. A warm humid event
would increase ��v�surface��, but also increase subsurface
temperatures and therefore ��v�ice table��, and the sign of its
effect is unclear.

In the following analysis, the net vapor flux is taken to be
proportional to gradients in partial pressure p instead of the
vapor density �v, which is approximately equivalent, but
more clearly untangles pressure and temperature depen-
dence.

Consider an event that lasts a short time interval dt. The
increase in ice �mean� temperature due to the heat input is
dT= �T−Tm�dt, and the resulting increase of the vapor pres-
sure of the ice is dpg= psv�Tm+dT�− psv�Tm�= ��psv /�T�dT,
where Tm is the mean temperature. �In a stationary situation,
the mean temperature of the soil and of the ice are the same,
because the mean heat flux vanishes.� On the other hand, the
extra contribution to the humidity in the air is dpa= �p
− pm�dt. One can define a stability index,

i =
dpa − dpg

dt
= p − pm − � �psv

�T
�

Tm

�T − Tm� . �23�

Here, p and T are functions of time. The stability index av-
erages to zero, �i�=0, and indicates whether any interval of
time contributes more or less than the average to stabiliza-
tion. �But the average condition may or may not be stable;
this index is only useful close to stability.�

Figure 4 shows this stability index for data from a meteo-
rological station on the floor of Beacon Valley, Antarctica
�19�, where ground ice is unstable but close to stable �10,11�.
This environment is 29 Pa short of stability, psv�Tm�− pm

=29 Pa. Measurements are available every 15 min, but only
every tenth data point is shown to avoid overcrowding the
plot.
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FIG. 2. �a� Required frost point temperature Tf as a function of
temperature amplitude Ta. The mean temperature is Tm=200 K. The
solid line shows the numerical solution, the dashed line is the per-
turbation expansion �19�, and the dotted line is approximation �21�.
�b� The maximum fraction of time the atmosphere can be unsatur-
ated and still stabilize the ground ice, �t1 /�.
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FIG. 3. Required mean temperature Tm and temperature ampli-
tude Ta for a frost point temperature of Tf =200 K. The required
mean temperature is only a few K less than Tf, even for large
amplitudes. The dashed and dotted lines show approximations �19�
and �21�, respectively.
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FIG. 4. Stabilization index, which is a measure of the contribu-
tion of an instantaneous event to the humidity balance between the
atmosphere and the ice, for meteorological data from Beacon Val-
ley, Antarctica �19� from 2001 to 2004. A positive index indicates
an above average contribution to stabilization. The vertical dashed
line shows the mean temperature.
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There is an upper bound to the stabilization index, which
corresponds to a relative humidity of 100%, and a lower
bound at a humidity of 0%. The upper bound reaches a mini-
mum for T=Tm, where i= psv�Tm�− pm. Warm humid periods
are strongly stabilizing, while warm dry periods are the most
destabilizing of all. The individual events with the highest
stabilization index at above average temperature occurred on
January 24, 2003 at an air temperature around −5 °C, rela-
tive humidities around 90%, and wind velocities consider-
ably lower than average.

Also favorable to the persistence of ice are the coldest
events. Although they provide a negligible amount of mois-
ture, they draw heat from the ground and reduce the mean
temperature and thus the vapor pressure of the ground ice.

The plot also reveals again that large amplitude oscilla-
tions are crucial. The largest contributions to stability occur
at temperature extremes. At mean temperature, i can be at
most 29 Pa, no more than required for stability. Without
large excursions from the mean, the relative humidity would
have to be close to 100% all the time to balance the vapor
pressure of the ice. For large temperature amplitude, on the
other hand, the relative humidity never needs to reach 100%
at any time.

The stability index can be generalized to a situation where
the ground ice is not very deeply buried but experiences
temperature fluctuations. Instead of evaluating the derivative
of the vapor pressure at Tm in Eq. �23�, it should be evaluated
at a temperature T* defined by �psv�T��= psv�T*�, where the
average is formed at the depth of the ice table.

IV. CONCLUSIONS

For a simple model with sinusoidal temperature oscilla-
tions, deeply buried ice, and constant absolute humidity, we

derived an asymptotic formula for the frost point temperature
of the atmosphere required to balance the vapor pressure of
the ice, Eq. �21�. It shows a rapid nonanalytic dependence on
temperature amplitude. The fraction of time the atmosphere
needs to be saturated to balance the vapor pressure of the ice
decreases with temperature amplitude.

Numerical solutions of the same idealized model indicate
that for conditions typical of Mars, the mean temperature
must be about 5 K less than the frost point temperature to
stabilize ground ice.

A method is described to determine the contribution of
weather events to ground ice stability. In Beacon Valley, the
coldest periods contribute most to stabilization; the reduction
in ice temperature outweighs the deficit in humidity. Hence
one can speculate that additional exceptionally cold events
would efficiently reduce or even prevent ice loss.

An insight from the perturbation expansion as well as the
analysis of stabilization indices is that large temperature os-
cillations are crucial for the persistence of ice beneath a dry
surface. Far-from-average air temperatures are capable of
balancing the vapor pressure of the ice with only brief con-
densation or even without condensation in the atmosphere.
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